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We present in this paper a rather general method for the construction of so-called condi-
tionally exactly solvable potentials. This method is based on algebraic tools known from
supersymmetric quantum mechanics. Various families of one-dimensional potentials are
constructed whose corresponding Schrédinger eigenvalue problem can be solved exactly under
certain conditions of the potential parameters. Examples of quantum systems on the real line
and the half line as well as on some finite interval are studied in detail. © 1998 Academic Press

I. INTRODUCTION

Since the advent of quantum mechanics there has been interest in quantum models
whose corresponding Schrodinger equation can be solved exactly. To be more
precise, by exactly solvable we mean that the spectral properties, that is, the eigen-
values and eigenfunctions, of the Hamiltonian characterizing the quantum system
under consideration can be given in an explicit and closed form. The most impor-
tant examples are the harmonic oscillator and the hydrogen atom. An first attempt
in finding such systems has been initiated by Schrédinger [ 1] himself and is now
know as the factorization method [2]. This factorization method has been revived
during the last two decades in connection with supersymmetric quantum mechanics
[3]. In particular, the factorization condition which is a condition on the quantum
mechanical potential for its exact solvability has been rediscovered and is now
known as the so-called shape-invariance condition [4]. In fact, there have been
several attempts in finding additional shape-invariant potentials besides those
already given by Infeld and Hull [2].

In the classical papers by Natanzon [5] and Ginocchio [6] it has been shown
that one can go even far beyond the class of shape-invariant potentials. To be more
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explicit, the Natanzon class of potentials is the most general one for which the
Schrodinger eigenvalue problem can be reduced to a hypergeometric differential
equation. The members of the Ginocchio class of potentials, which is a subclass of
the previous one, are of particular interest in nuclear physics [6]. The relation
between these classes of potentials and supersymmetry has been studied in detail by
Cooper et al. [7].

Other methods which are also closely related to supersymmetric (SUSY) quan-
tum mechanics are based on the idea of finding pairs of (essentially) isospectral
Hamiltonians [8-127]. One of these methods, the Darboux method, is based on the
existence of an operator 4 and its adjoint AT which act as transformation operators
between a pair of self-adjoint Hamiltonians H, [13, 14]:

AH =H,A, H_A'=A'H,. (1.1)

Obviously, H, and H_ are essentially isospectral, that is, there spectra coincide
except for a possible additional vanishing eigenvalue. Knowing, for example the
eigenfunctions of H_, one can immediately obtain those of H _ with the help of the
transformation operator A%, This Darboux method, which has originally been
applied with linear first-order differential operators A4, has recently been extended
to higher-order differential operators where it is called N-extended Darboux trans-
formation (with N standing for the highest order of the momentum operator
appearing in 4) [15, 16].

Another different method for constructing exactly solvable systems has been
suggested by Abraham and Moses [8] and is based on the inverse method. As in
the Darboux method one starts with a given exactly solvable Hamiltonian and
constructs a new one whose spectral properties follow from those of the starting
Hamiltonian. Applying this approach to SUSY quantum systems it is equivalent to
the Darboux method [10].

In this paper we develop yet another method for constructing so-called condi-
tionally exactly solvable systems [17]. This method, which is based on the SUSY
formulation of one-dimensional quantum systems has recently been suggested by us
in [18]. It is the aim of this paper to present the detailed ideas of this approach
and to apply it to various physically relevant model systems on the real line, the
half line, and those on a finite interval. In particular, we will show that many of the
newly found exactly solvable potentials contain as special cases also those found by
the other two methods mentioned above.

In the next section we will briefly review the basic algebraic tools of SUSY
quantum mechanics [3], which will be used in the general construction method
presented in Section 3. The remaining three sections present a detailed discussion
of examples on the real line, the half line and finite intervals. To be more explicit,
in Section 4 we construct the most general class (within our approach) of SUSY
partner potentials for the linear harmonic, the Morse and the symmetric Rosen—
Morse oscillator. Section 5 contains the corresponding results for the radial



CONDITIONALLY SOLVABLE POTENTIALS 157

harmonic oscillator and the radial Coulomb problem. In Section 6 we consider the
symmetric Pschl-Teller oscillator as an example on the finite interval [ —=/2, 7/2].

2. SUPERSYMMETRIC QUANTUM MECHANICS

In this section we briefly review the basic concepts of Witten’s model of super-
symmetric quantum mechanics [ 19, 3]. This model consists of a pair of standard
Schrodinger Hamiltonians

1 d?

Hi:_iﬁ_‘_ Vi(x) (21)

which act on the Hilbert space # of square integrable functions over a given
configuration space. In this paper we will consider systems on the real line R,
on the positive half line R*, and on the finite interval xe[ —n/2, #/2]. In the
latter two cases we will impose Dirichlet boundary conditions, that is, the Hilbert
spaces are given by # =L*R), #={yecL*R*)|y(0)=0}, and # ={ye
LY([ —n/2,7/2]) | Y( £+ n/2) =0}, respectively. The so-called SUSY partner poten-
tials in (2.1) are expressed in terms of the real-valued SUSY potential W and its
derivative W' =dW/dx,

Vi(x)=3(W(x) £ W'(x)). (22)

Introducing the supercharge operators

1 /d 1 d
d=— (2w At=— (L 1w 23
ﬁ(dﬁ ), ﬁ( ) (23)
the SUSY partner Hamiltonians factorize as
H,=AA'>0, H =A4'4>0 (2.4)

and obviously obey the relation (1.1). As a consequence H . and H _ are essentially
isospectral, that is, their strictly positive energy eigenvalues coincide. In addition
one of the two Hamiltonians may have a vanishing eigenvalue. In this case, SUSY
is said to be unbroken and by convention [3] (via an appropriate choice of an
overall sign in W) this ground state then belongs to H_. This convention implies
that exp{| dx W(x)} ¢ #.

Let us be more explicit and denote the eigenfunctions and eigenvalues of H, by
¥ and EX, respectively. That is,

Hoy2(x)=EXy*(x), n=0,1,2, ... (2.5)
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For simplicity we consider only the discrete part of the spectrum here. However,
relations similar to those given below are also valid for the continuous part. In the
case of unbroken SUSY (within the aforementioned convention) the zero-energy
eigenstate of the SUSY system belongs to H_ and the corresponding ground state
has the properties

E; =0, l,llo_(x)=Cexp{—fdx W(x)}e.%” (2.6)

with C denoting the normalization constant. The remaining spectrum of H_ coin-
cides with the complete spectrum of H_ and the corresponding eigenfunctions are
related by SUSY transformations which are generated by the supercharge operators
(2.3):

E 0 =Ef>0, Y (x)=(EN)72ANYS(x), ¥f(x)=(E, )" 4y, (x).
(2.7)

In the case of broken SUSY, H_ and H _ are strictly isospectral and the eigenfunc-
tions are also related by SUSY transformations:

E;,=Ef>0, Y (x)=(E}) AN} (x), Y (x)=(E;)" "4y, (x)
(2.8)

With the help of the relations (2.6) and (2.7) or (2.8) it is obvious that knowing
the spectral properties of, say H_, one immediately obtains the complete spectral
properties of the SUSY partner Hamiltonian H _. These facts will be our basis for
the general construction method of conditionally exactly solvable potentials, by
which we mean that the eigenvalues and eigenfunctions of the corresponding
Schrodinger Hamiltonian can be given in an explicit closed form (under certain
conditions obeyed by the potential parameters).

3. THE CONSTRUCTION METHOD

In this section we present a rather general method for the construction of condi-
tionally exactly solvable potentials using the SUSY transformations between the
eigenstates of the SUSY partner Hamiltonians H . The basic idea is as follows. Let
us look for some SUSY potential W such that under certain conditions on its
parameters the corresponding partner potential V', becomes an exactly solvable
one. For example, one of the shape-invariant potentials knowns form the factoriza-
tion method [2, 3]. As a consequence the spectral properties of the associated
Hamiltonian H, are known exactly. From the given SUSY potential W also
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follows the corresponding partner potential V' _ and its associate Hamiltonian H .
As we will see below, this potential is in general not shape-invariant but still exactly
solvable via the SUSY transformations (2.7) or (2.8).

In order to find an appropriate class of SUSY potentials we make the ansatz

W(x)=®&(x) + f(x), (3.1)

where @ is chosen such that for f=0 the corresponding partner potentials V',
belong to the known class of shape-invariant exactly solvable ones. For a non-
vanishing f we have

Vi (x) =3[ (%) + @'(x) + f2(x) + 20(x) f(x) + f'(x)] (3.2).

If we now impose on f the condition that it obeys the following generalized Riccati
equation

f2(x) +2(x) f(x) + f'(x) = b, (3.3)

where, for the moment, b is assumed to be an arbitrary real constant, then the two
partner potentials take the form

V(%) =3[ 9*x) + @'(x) +b], (34)
V(%) =3[ 9%x) — ®'(x) —2f"(x) + b]. (3.5)

Obviously, V', is, up to the additive constant b/2, a shape-invariant potential and
therefore exactly solvable. With the help of the SUSY transformation we can now
also solve the eigenvalue problem for H_ for the above given potential ¥ which,
due to the additional x-dependent term f’ will in general be a new non-shape-
invariant potential. At this step we already realize that the free parameter b has to
be bounded below, as SUSY requires a strictly positive Hamiltonian H . This is
a first condition on a parameter contained in ¥_ and already justifies to call it a
conditionally exactly solvable (CES) potential.

The crucial problem in finding new CES potentials is to find the most general
solution of the generalized Riccati Eq. (3.3). For this reason we linearize this
equation by making the ansatz

u'(x)

u(x)’

f(x) =di;log u(x)= (3.6)

which brings it into the form of a homogeneous linear second-order differential
equation

u'(x)+2@(x) u'(x) — bu(x)=0. (3.7)
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The general solution of this equation is given by a linear combination of two
linearly independent fundamental solutions

u(x) =oaty(X) + Pus(x). (3.8)

Hence, besides the parameters contained in @ and the parameter b the new CES
potential ¥¥_ will also depend on the real parameters « and f. Note, however, that
only the quotient «/f or f/x will enter ¥ _ as a relevant parameter. In other words,
depending on the actual situation one of these two parameters can be chosen
(without loss of generality) to unity. The remaining parameters, however, will in
general be not arbitrary real numbers and have to be chosen such that the corre-
sponding supercharges

A=w—1—<i+¢(x)+”'(x)>, A*=~L(—i+d§(x)+u,(x)> (3.9)

ﬁ dx u(x) \/5 dx u(x)

are well-defined operators leaving the Hilbert space invariant, A:# — #,
A" # — #. A sufficient condition for that is to allow only for nonvanishing solu-
tions (3.8). Thus the parameters have to be chosen such that » is (without loss of
generality) a strictly positive function. Indeed, this condition also guarantees us that
the potential

_1 LR A G w(x)) b
V_(x) =3 D?(x) = @'(x)+ ) <2d5(x) + u(x)> 5 (3.10)

does not have singularities inside the configuration space. So H, and H_ have
indeed a common domain . This condition is actually the most difficult part in
our approach.

For all shape-invariant SUSY potentials, which we have considered, Eq. (3.7) can
be reduced to a hypergeometric or confluent hypergeometric differential equation.
That is, the two fundamental solutions u, and u, in (3.8) are expressed in terms of
hypergeometric or confluent hypergeometric functions. Finding the proper linear
combination leading to a strictly positive solution is very difficult and in general
can be obtained only by inspection (numerically and/or via the asymptotic
behaviour at the boundaries of the configuration space).

Besides the above mentioned necessary conditions on the potential parameters b,
a, B, and possible additional ones contained in @, we will further restrict these
parameters in the following respect. Let us assume that the SUSY quantum system
(2.1) is unbroken (broken) for f=0. Then we consider only those values of the
parameters for which the system with f# 0 remains to have unbroken (broken)
SUSY. Hence, due to our ground-state convention, we have the following addi-
tional conditions:
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exp { j dx W(x)} — u(x) exp { f dx cb(x)} ¢ A

for broken and unbroken SUSY,

exp {—jdx W(x)} = [u(x)] ™" exp {_fdx cp(x)}é% (3.11)

for broken SUSY,

exp {—-J.dx W(x)} =[u(x)] " 'exp {MJ dx @(x)} €N
for unbroken SUSY.

In the following we will consider several examples on the real line, the positive
half line, and a finite interval. Both, unbroken as well as broken SUSY systems will
be discussed.

4. QUANTUM SYSTEMS ON THE REAL LINE

In this section we will consider two examples on the real line in some detail.
These are the linear and the Morse oscillator, which both have an unbroken SUSY.
Note that there are no known shape-invariant potentials on R which allow for a
broken SUSY. Finally, we also briefly summarize some results for the symmetric
Rosen—Morse oscillator.

4.1. The Linear Harmonic Oscillator
The first SUSY system we are considering is characterized by a linear SUSY
potential @(x) = x which gives rise to a unbroken SUSY with potential
Vo(x)=3x*+b+1). (4.1)
The energy eigenvalues and eigenfunctions of the corresponding Hamiltonian read

Ef=n+b2+1, Y}r(x)=[J/72m!] > H(x)exp{ —x*2}, (42)

where H, denotes the Hermite polynomial of order n e N,. Clearly, positivity of H .
implies the condition 6> — 2.

The general solution of (3.7) can be given in terms of confluent hypergeometric
functions [20],

b1 2-5b3
w0 =aiF (55— )+ (05 ) 43)
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and has the following asymptotic behaviour for x - + o0

att’ I3/
S F(b(/4/+)1)

u(x) = | x|*"2 (cx AL

)(l +0(]x|™h). (44)
Here and in the following I" denotes Euler’s gamma function. From this asymptotic
behaviour the condition on the parameters « and g for a strictly nonvanishing u
reads | B/a| <2I'(b/4 + 1)/I((b + 2)/4). Note that the right-hand side of this inequality
is positive as 5> —2 and that « must not vanish, that is, it can be chosen equal
to unity, a = 1.

The potential ¥_ can be obtained from (3.10) and explicitly reads

, b+l W(x)

Vo (x)= u'(x)

1
_ 7% > +u(x)[ x+u(x)}, (4.5)

where u is given in (4.3). The eigenvalues and eigenfunction for the associated
partner Hamiltonian H _ are found via (2.6) and (2.7) as SUSY remains unbroken:

E;=0,
Yo (x)= ﬂeXP{ x?/2},
(4.6)
E;+1—E:’
~ exp{ —x?/2} (H 1 () LN
lr[In+1( [\/’2,,4_1”' (n+b/2+1)]1/2 n+1(x)+ n(x) u(x)).

Figure 1 presents a graph of this family of potentials for be [ —2.5, 3], a =1, and
B=p(b)=15xTI(b/4+1)/I'((b+2)/4). It clearly shows singularities for b < —2 as
expected. In Fig. 2 we keep b= — 1.9 fixed and display the potential ¥_ for various
values of the asymmetry parameter . Again singularities appear for |§| =2I(b/4 + 1)/
I((b +2)/4) =~ 0.08569. Let us note here that the potential (4.5) has previously been
considered by Hongler and Zheng [21] in connection with an exactly solvable
Fokker-Planck problem, which is closely related to Witten’s SUSY quantum
mechanics [3].

Special cases of _ have also previously been found with the methods mentioned
in the Introduction. For example, the special values b=0, a =y, and f=1 lead to

u(x)=y+( f /2) Erf(x) (Erf denotes the error function) which is the result of
Mielnik [9]. For b=4N, NeN, a =1, and =0 the conditionally exactly solvable
potential reads

_x2 Hyy_o(ix) 2 [ Han—1(ix) 2 1
V,(x)—?-i—SN(ZN—l)——m—)———IGN <72N(1x—)) +2N—2 (4.7)
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FIG. 1. The potential (4.5) for fixed a=1, f=1.5xI(b/4+ 1)/ ({b+2)/4), and various ranges of
the parameter . Note that for b < — 2 the potential exhibits singularities due to the existence of zeros

in # as given in (4.3).
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which has previously been obtained by Bagrov and Samsonov [16] via the N-order
Darboux method. See also [ 18] where, in particular, the cases N=1 and 2 have
been discussed.

4.2. The Morse Oscillator

As a second example we consider the Morse oscillator which is characterized by
the SUSY potential

';D(x)=7/_e—x= V>0= (48)

where the condition on the parameter y results from our ground-state convention
(see Section 2). Changing from parameter b to

p=7+b (4.9)

the corresponding potential (3.4) reads
Vix)=3(e > =2y -1 e " +p?. (4.10)

The (discrete) spectral properties of the associated Hamiltonian H  are

1 p?
E:=—~5(y—n—l)2+—-2—-, n=01,2,..<y—1,
l)WL(X)_{(Z)}—Qn—Z)I“(nJ}—l) 1/22y_n_1 @)
m A I2y—n—1) '

xexp{ —e *—x(y—n—1)} L I (2e7),

with L’ denoting the generalized Laguerre polynomial of order » [20]. Obviously,
positivity of H, implies the condition

p>y—1. (4.12)

With the above SUSY potential (4.8) the differential equation (3.7) can be reduced
to that of the confluent hypergeometric equation and in turn the general solution
reads

w(x)=ae 0P Fi(y+p, 1+2p, —2e %)+ Pe =2 Fi(y—p, 1 —2p, —2¢7%),
(4.13)

which has the following asymptotic behaviour for x — — oc:

ri+2%) I(1—2p)
2 (1—y+p) "2 T(1—y—p)

u(x)=«o + O(e™). (4.14)



CONDITIONALLY SOLVABLE POTENTIALS 165

From the asymptotic behaviour of u for x - + co, which can trivially be extracted
from (4.13), and the form of the SUSY ground-state wavefunction

V() =;(%exp{ yx—e) (4.15)

one finds that SUSY remains unbroken iff f##0. Hence, we can set it equal to
unity, = 1. The positivity condition of u can, with the help of the relation (4.14),
be translated into conditions on the remaining parameters. These are
-2 I'(1—2p)I7(1 —
poy—1,  SUZ2) o T2 AP 7y)
I(1—p—y) I'(1+2p) I(1—p—7y)

(4.16)

which have to be obeyed simultaneously.
In Fig. 3 we have shown the family of potentials

2 2 u(x) u(x)
for =0, y=1, and pe€[0,4]. Note that from (4.16) the allowed values of p for

the given a and y are pe{J;°_, 12k + 1/2, 2k + 3/2[. These admissible ranges of p
are clearly visible in Fig. 3. Figure 4 shows the graph of V' _ for the cases a#0

V_(x) :%e’z"—(})+l> e‘x+y2—p—2+M<2y—Ze_x+M> (4.17)

L0

W
DR
QRN

TR
RO
W \\“\\\\‘\\ R

»,

\‘\,\‘ R

FIG. 3. The CES potentials of the Morse oscillator. Here V_ is shown for a=0, y=1, and
pe[0,4]. The corresponding solution u is given in (4.13). Note the appearance of singularities in V' _
due to the violation of the conditions given in (4.16).
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FIG. 4. Same as Fig. 4 but now for fixed y=p =3 and various values of a. Again singularities
appear for a < —4/45 = —0.08889 due to the last condition in (4.16).

and y=p=3. Note that the last condition in (4.16) now explicitly reads o>
—4/45 = —0.08889. The violation of this condition is also clearly visible in Fig. 4
via the singularities in ¥ _

To complete the discussion of this example we finally give the discrete spectral
properties of the corresponding partner Hamiltonian H_. As SUSY remains
unbroken the ground-state energy vanishes, £, =0, and the corresponding eigen-
function is given in (4.15). For the excited states the discrete spectrum is given by
E. . ,=E] and the associated wavefunctions explicitly read

(2y—2n—-2)I(n+1) 172

g DI -n-n) 2 oplme=xt=n=D)

b=

x{(n+1)L§,21;2n~2>(2e—X)+ L& =2=D(2e7) | (4.18)

u'(x)
u(x)
4.3. The Symmetric Rosen—Morse Oscillator

As a last example on the real line let us briefly discuss the symmetric Rosen—
Morse potential (sometimes also called modified Poschl-Teller potential) which is
characterized by the SUSY potential

@(x) =y tanh(x), v > 0. (4.19)
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The corresponding potential 7" reads

—1 21 p
P(y )+7J+

V. (x)=—
+(%) 2 cosh? x 2

(4.20)

and for y € N is known to belong to the class of reflectionless potentials, which are,
for example, important for the construction of explicit solutions of the Korteweg-
deVries equation [22].

For the above SUSY potential (3.7) can be reduced to Legendre’s differential
equation and the general solution is given by

u(x) =cosh ~"(x)[«P? 19"(tanh x) + O +¥""(tanh x)], (4.21)

where P# and Q# denote Legendre functions as defined in [20]. We leave it to the
reader to investigate the proper admissible ranges for the potential parameters b, «,
B, and y, and only remark that the family of partner potentials

1 2—b '
- ZyS:):;xz)x ! > + 1;(()):)) (27} tanh x + l; ((;c))) (4.22)

will contain new reflectionless potentials (via the choice ye N) and thus may, for
example, allow us to find new explicit solutions for the Korteweg—deVries equation.

V_(x)=

5. QUANTUM SYSTEMS ON THE POSITIVE HALF LINE

As examples of new CES potentials on the positive half line we consider in this
section the radial harmonic oscillator, which allows for unbroken as well as broken
SUSY, and the radial hydrogen atom problem.

5.1. The Radial Harmonic Oscillator with Broken SUSY
The SUSY potential for the radial harmonic oscillator is given by

¢(x)=x+~£. (5.1)

This SUSY potential leads to an unbroken SUSY system (f=0) if the parameter
y is negative. This case, which has already been discussed in some detail in [18],
leads to rather strict conditions on the potential parameter b and in turn gives rise
to a very limited class of new CES potentials. Therefore, we discuss here only the
case of broken SUSY, that is, y>0.

The potential for the partner Hamiltonian H . reads

x? —1) b+1
V+(x)=?+y();x2 +y+ 2

(5.2)
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and gives rise to the following spectral properties

2n!
I'n+y+1/2

b 1/2
EXf=2n+2y+1 +3 Y (x)= { J x%e *PLO-VD(x?). (5.3)

Positivity of H . leads us to the condition b> —4y—2.
The general solution of Eq. (3.7) is expressed in terms of the confluent hyper-
geometric function and reads

b 1 1 b 3
u(x):alF1<_Zﬂ y+53 _x2>+ﬁx1——2y1F1 <E_Z_7},§_)}’ _x2>. (54)

For small 0 <x << 1 this solution behaves like u(x)= (x + fx'~?*)(1+ O(x*)) and
as a consequence we have to set f=0 for SUSY to remain broken. Note that
exp{ — | dx W(x)} =exp{ —x?/2}/x’u(x) and cf. Eq. (3.11). Therefore, without loss
of generality we set « =1 and consider from now on only the solution

b 1 b+2 1
wx) =i F (=G4~ =R (4 T 50) (59)

leading to broken SUSY. This solution will have no zeros if 5> —4y —2, a condi-
tion which we have found before from the positivity of H, .
The partner potential reads

Yy +1) h+1 u'(X)<2x+2? u'(X))

x  u(x)

V=2
7(x)_—2_+ o 1T u(x)

(5.6)
and is shown in Fig. 5 for y=0.5 and various values of b. As expected there are
singularities in ¥ _ for those values of » which violated the above condition. The
eigenvalues of the corresponding Hamiltonian H_ are identical to those of H .
given in (5.3) with eigenfunctions

o 2n! V2 et ety W(X)
Vo ()= (n+y+1/2+b/4)1“(n+y+1/2)} e /(Lﬁ' /)(x)+2xu(x)>
(5.7)

which follow from the SUSY transformation (2.8).
Finally, we note that for unbroken SUSY (/= —y>0) the special case b =10
of (5.4)

u(x) =a+ 2057+ | " dt e (5.8)

0

has, in essence, been discussed before in [23, 24].
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FIG. 5. The CES potential (5.6) of the radial harmonic oscillator for y=0.5 and various values

of b. Note that the allowed range for this parameter is given by b> —4y — 2= —4

5.2. The Hydrogen Atom
The SUSY potential for the radial hydrogen atom problem is given by
_a v
@(X)—“———, a, y>0: (59)
X
and leads to the partner potential
a yy+ 1) 1 2
V =—— —(b 5.10
()= =S+ B s (b2, (5.10)
The spectral properties of the associated partner Hamiltonian H, are well known
For simplicity we give here only the discrete eigenvalues
Er=-— a +1(b+a2/ %) neN (5.11)
" 2n4y+1)2 2 e o '
(5.12)

leads to the condition

Then the positivity of H
b+a*y*>af(y+1)
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0 2 4 6 8 10
p

FIG. 6. Allowed ranges for the parameters y and p of the hydrogen atom problem according to the
first two conditions given in (5.16). For details see the text.

In the present case the general solution of (3.6) is again given in terms of
confluent hypergeometric functions

u(x)=e P [o Fi(—y—alp, —2y,2px)
+B(2px)* 1 \Fi(y+1—a/p, 2y +2,2px)] (5.13)
and has the following asymptotic form for large x

I'(—2y) N I(2y+2)
I'(—y—afp) ~ I(y+1—afp)

u(x) — (2px)”*“/” e(p—a/y)x

il (1+0(x~h).
(5.14)
In order to find all conditions on the potential parameters we first note that

Yo (x) =%x”e“"” (5.15)
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and, therefore, the parameter « must not vanish in order for SUSY to remain
unbroken. Hence, without loss of generality we may put a =1. From the above
asymptotic form (5.14) we can now also deduce further conditions on the
parameters from the positivity restriction on ». Summarizing all conditions we have

a N2 o o D) Totl—ap) g0

P> Top—ap) CI(—y—afp) T'(2y+2)

In Fig. 6 we give a graphical representation of the first and second condition. Here
the grey area shows the forbidden region due to the first condition and the black
area the forbidden region due to the second condition. In other words, the allowed
region of the two parameters y and p for a given coupling constant a, which is set
equal to unity in Fig. 6, is the white area.

The CES potential for the hydrogen atom problem reads

_a yy=1) @ p? W(x)2a 2y uw(x)
V_(x)——x+—+y2 2+u(x)< ) (5.17)

x  u(x)
Figure 7 shows this potential for a=1, =0, and y=2.8. According to (5.16) the
allowed region for p with the others as fixed above is given by 1%, [ v 13, 5[.
The singularity appearing for p = 5 is clearly visible in Fig. 7. The other singularities
are outside the plotted range of 0 <x <2 and therefore not visible. In Fig. 8 we
keep y=2.8, a=1, and p=a/y fixed and show the potential (5.17) for various
values of f. Note the singularity appearing for < —4.39554 x 10 ~* according to

i
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FIG. 7. The CES potential (5.17) of the hydrogen atom problem for a=1, f=0, y=2.8, and
various values of p.
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FIG. 8. Same as Fig. 7, but for fixed a=1, y=2.8, p =a/y, and various values of f.

the violation of the last condition in (5.16). Finally, let us also remark that for the

special case p =a/y (i.c., b=0) we have

u(x)=a+ﬁ(2y+1)f:aX/y dt t?e~" (5.18)

a result, which has previously been found in [24].

6. QUANTUM SYSTEMS ON A FINITE INTERVAL

As example for a quantum system defined on a finite interval we will consider

here the symmetric Poschl-Teller potential, whose SUSY potential is given by
y >0, (6.1)

@(x) =y tan x,
leading to an unbroken SUSY with

Wy+1) b—y?
V+(x):20032x+ 2

(6.2)

This is the well-studied Poschl-Teller potential, which gives rise to the following

spectral properties of H  :



CONDITIONALLY SOLVABLE POTENTIALS 173

2

1 b—
E+r=— 14+n)?
" Z(H +n)*+ 7

(y+1+n)I(2y+2+n) e :
Vo ()= f Tt 1) cos'? xP, I, }i(sin x).

ne Ny,
(6.3)

Again, positivity leads to a condition on the parameter b, b > —2y —1. However,
for later convenience we introduce another parameter p =.,/y>—b and in terms of
this, the above condition reads

0<p<y+1 or peilR. (6.4)

The general solution for the corresponding differential Eq. (3.7) is given in terms of
hypergeometric functions

—p 1
u(x)=o,F, (—m u, 3 sin? x) + fsin x, F, (

, s 1orep 3 )
2 2 2 2 2
(6.5)

Obviously, as a necessary condition « must not vanish in order to have no zeros
in this solution. Hence, we will set « equal to unity in the following discussion.
From the values of u at the boundaries of the configuration space,

I(1/2) I(1/2+7y)

ﬁTU1+?+pVﬂIU1+v—pV%}
1+% 6.6
’{ IR+ T+ p)2) | (66)
we also deduce a condition for the remaining parameter f:

T T+ +p)2) I + (7= p)2) (6.7)

I((14+y+p)/2) I((14+y—p)/2)

Finally, let us note that SUSY remains unbroken and the ground-state wave
function for H _ is given by

cos’ x

Yo (x)=C (6.8)

u(x)

Hence, (6.4) and (6.7) constitutes the complete set of conditions on the three
parameters f, y, and p. The corresponding partner potential is given by

=1, P W) W(x)
V‘(x)_2coszx Y-+ > + () (2;} tan x + u(x))’ (6.9)

which is shown in Figs. 9-11 for some special cases. In Figs. 9 and 10 we have set
f=0, y=2, and chosen real (0<p<3.25) and purely imaginary (0<p/i<4)
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FIG. 9. The CES potential (6.9) of the Pdschl-Teller problem for #=0, y=2, and 0 < p <3.25

values for p, respectively. Figure 9 exhibits singularities for p >3 as expected from
(6.4), whereas Fig. 10 does not have singularities for the same reason. Finally,

Fig. 11 shows the potential (6.9) for fixed y=2, p =1, and various values of the
asymmetry parameter . Here due to condition (6.7) we expect and actually see

singularities for |f| > 2.35619.
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FIG. 10. Same as Fig. 9 but for complex p, 0 < p/i<4
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FIG. 11. Same as Fig. 9 with y=2 and p =1 and various values of f.

7. CONCLUDING REMARKS

In this paper we have presented a method for constructing conditionally exactly
solvable potentials starting from the known SUSY potentials of shape-invariant
(exactly solvable) potentials. This method is more general then those given in the
literature before. In particular, most of the previously constructed CES potentials
correspond to the special case b =0 of our method. We also remark that the new
potentials constructed in the present work do not belong to the Natanzon class
[5]. This is most obvious by noting the fact that in the present case of CES poten-
tials the corresponding wave functions in general depend on the quotient «'/u which
is a quotient of (confluent) hypergeometric functions. In contrast to this, the solu-
tions of the Natazon class [5, 6] and their SUSY generalizations [ 7] are given by
sums of (confluent) hypergeometric functions.

There are several ways to generalize the present approach. Obviously, one can
now choose the newly found SUSY potentials of this paper as input and try to con-
struct further CES potentials from these. In general we expect to find a hierarchy
of new families of CES potentials belonging to the initial shape-invariant one. In
the present paper we have restricted ourselves to those parameter values which con-
serve the nature of SUSY, that is, SUSY remains unbroken or broken by adding
the f =u'/u term to the SUSY potential. This condition can certainly be relaxed.
Some of the conditions on the potential parameters have been extracted from the
asymptotic behaviour of the solution u of (3.7). Hence, these conditions are only
sufficient ones. In most cases we expect them to be also necessary, but there may
be exceptions. In any case, if one wants to construct some exactly solvable model
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potential via the present method a detailed analysis of the allowed parameter values
is advisable.

We should also note that the present approach can be utilized to construct new
drift potentials for which the associated Fokker—Planck equation allows for an
explicit and exact solution. This would be similar to the discussion of the linear
harmonic oscillator by Hongler and Zheng [ 21]. Let us also mention that one may
choose complex values for the parameters o and/or f. This will lead to complex
partner potentials V' _ whose associated non-hermitian Schrédinger Hamiltonian
will have a real spectrum [25-27]. Finally, we note that all the known shape-
invariant potentials give rise to a dynamical group structure [28]. This group
structure induces, via the SUSY transformations (2.7)-(2.8), a related structure for
the corresponding CES Hamiltonian H _. For example, one can construct from the
well-known ladder operators of the linear and radial harmonic oscillator via the
supercharges (2.3) ladder operators for the corresponding partner Hamiltonian
H_. It turns out that these operators close a non-linear algebra [18]. A detailed
discussion, in particular, of the coherent states associated with these non-linear
algebras will be given elsewhere [29].
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